
BiG EVAL
High Data Quality.
Mastered.

NO MORE FIREDRILLS GUIDE TO

BUSINESS INTELLIGENCE
TESTING

by Thomas Bolt, CTO BiG EVAL Data Quality Solutions

BIGEVAL.COM

https://bigeval.com/

bigeval.com2

IMPRINT
Author
Thomas Bolt, CTO BiG EVAL

Publisher
BiG EVAL - Bolt Technology Consulting GmbH
Oberfeldstrasse 12a
8302 Kloten
Switzerland

All Rights Reserved
Reprinting, publishing or copying this document or parts of this document is only allowed with the written
approval of the publisher and by referencing the source. All Copyrights are held by the publisher and the
authors or the stated holder of rights.

https://bigeval.com/

bigeval.com 3

INHALT
Why Testing is so Important ..4

Testing by Developers . 4
Developer Reviews . 4
Testing a feature one time only . 5
Acceptance tests by business experts and end users . 5
In-house-built testing framework . 5
Conclusion . 5

Testing a Business Intelligence System ..6

Source Data ...7
Conformity of Source System Interfaces . 8
Schema of Source Data . 8
Availability of Source Data . 8
Accessibility of Source Data . 8

Staging Area ..9
Availability of Source Data . 10
Records count . 10
Business key completeness . 10
Format checks . 10
Historization complete . 10
Performance Checks . 10

Data Integration...11
Initial Load . 12
Regular Load . 12
Rollback . 12
Reload . 12
Rerunning data loads without rollback . 12
Business Logic . 12
Historization . 13
Data Cleansing . 13
Performance . 13

Data Model and Meta Data...14
Data Model fully implemented . 14
Correctly sized data types . 14
Check for data truncation . 14
Referential integrity checks . 14

https://bigeval.com/

bigeval.com4

WHY TESTING
IS SO
IMPORTANT

Often I get asked why a data warehouse should be tested. This
question sounds really weird when you think at the huge impact
data has on your business today. It should be clear that a robust
testing strategy is needed, and I’m sure the questioner is aware
about that. So, every time when I hear this question I try to dig
deeper to find out what the questioner really means. And here are
some of the statements I usually hear:

“Developers already tested the system components they built for the
data warehouse.”
“We do developer reviews.”
“We test a feature before it gets released.”
“Our business experts and end users perform acceptance tests.”
“We built our own testing framework.”

Is that really enough testing?

Let us spot some light on each of these statements.

Testing by Developers
That’s great and it should be done by every developer. But usually
there is no clear strategy behind these white-box tests. Developers
test specific situations they may have experienced in the past,
or situations that they believe to be critical. When tests succeed,
they proceed with their work. When tests fail, they fix the issue
immediately.
These tests usually cannot be repeated to ensure that the problem
doesn’t arise again. And the test coverage is usually low or very
limited.
And there’s one more thing: It’s in the nature of each individual to
think, that things built by themselves work flawless. As a result,
testing is usually done insufficiently.

Developer Reviews
The four-eyes-principle is clearly one of the most effective ways to
prevent development errors. But it’s just one little cogwheel in the
whole gear of your testing strategy. And only things that are obvious
and understandable by both people can be reviewed.

https://bigeval.com/

bigeval.com 5

Testing a feature one time
only
There are many reasons why a
system component breaks or
stops working correctly when
another feature gets added or
existing ones get changed. Often
there is no direct connection
between these features and no
one thought this could happen. So
testing a component should be
repeatable with every release to
ensure that nothing breaks what
already worked before.

Acceptance tests by
business experts and end
users
Acceptance tests are really
important in every project. But

they are usually done once before
releasing a new feature. As I
already told you before, there
are many reasons why a system
component could break suddenly.
So in fact, acceptance tests
should be repeated with every
release to test a system reliably.
But that’s usually unrealistic
because of the huge effort needed
by multiple involved in acceptance
tests.

In-house-built testing
framework
Great! You’re on the right way. But
what was the effort to build this
framework? And what efforts are
needed to maintain it? Are there
other developers who are able
to take over the code when the

creator leaves your company?
And is the feature-set flexible and
rich enough to fulfill future needs?
These are just some questions
that you should think about
before relying on a proprietary
development. And keep in mind,
that there are proven standard
tools on the market that were built
with an effort of many years.

Conclusion
Most of these approaches are adequate and important. They should be part of your testing strategy for sure.
But when we look at a data-driven project, there are many reasons why we cannot only rely on these. Most
important is the automation aspect. As you may have recognized, all type of testing should be repeatable
to assure that the tested component keeps working correctly during the whole lifetime. It shouldn’t break
suddenly with a following release.

With the repeatability in mind, there comes the need for automation. Running tests manually over and over
again, needs a lot of personnel resources what costs a lot of money. And it needs time what you clearly don’t
have in an agile project.

So, let us look at what should be tested, how it should be tested, and how you can automatize things. Go on
to the next chapter.

https://bigeval.com/

bigeval.com6

TESTING A
BUSINESS
INTELLIGENCE
SYSTEM

A data warehouse is not just a database that stores integrated data.
There are many different system components and processes that
build together the data warehouse system. And if we go further
and think about how data gets analyzed or used in processes and
decisions, there are subsequent components as well, that may
build a whole business intelligence system. So, when thinking
about our testing strategy we should broaden our focus on all these
components.

https://bigeval.com/

bigeval.com 7

Usually an enterprise data warehouse has many different sources of data. Each of them with its own
technology and data model. The quality of the information that these systems provide, needs to be of
adequate quality before you should load it into your data warehouse. But the quality also varies tremendously
because of the very different ways, data gets entered and managed either by people or by technical
processes.
You don’t need 100% accuracy, because this would be nearly impossible to reach without an enormous
effort. You should find the level of quality that allows you to fulfill the goals your project has with adequate
costs. There are data quality management solutions like BiG EVAL that allow you to ensure a high level of
data quality in an automated way to lower costs and efforts.

SOURCE DATA

https://bigeval.com/

bigeval.com8

Conformity of Source
System Interfaces
There are interfaces that allow to
access source data. Often these
are industry standards that don’t
need to be tested explicitly. But
when it comes to customized
interfaces like an export of flat
files or web service API’s for
example, there should be a clear
definition of the interface.

Testing is needed to ensure that
there are no differences between
the interface definition and the
actual implementation. Otherwise,
a data integration process could
fail.

Running these test cases
automatically in a productive data
warehouse environment makes
sure that the interface conforms
the definition even when changes
and bug fixes get deployed.

Schema of Source Data
When data integration processes
fail, often changes in the schema
of source data are the reason.
There are many different changes
that may harm your data
integration processes like:

 » Names of files changed

 » Names of tables or columns
changed

 » Data Types changed

 » Columns get removed or others
get added

 » etc.

These changes usually happen
because the vendor or the
development team apply system
updates. Often the teams that
are responsible for subsequent
systems like a data warehouse, do
not get informed about that.

Adding a column or additional
tables is usually not a problem.
But when columns or tables are
missing, or even worse when data
types get changed, this leads to
huge problems.

Automatically monitoring the
schema of the source data for
changes, helps you to detect these
problems early. That’s important
during development to ensure that
nothing breaks shortly before your
release deadline. But it’s much
more important when your data
warehouse is productive.

Availability of Source Data
You should frequently check
whether your source data is
available in two different manners.

Data should be available
technically. That means that
the technical infrastructure like
networks, firewalls etc. need
to work correctly. You can
ensure this using a monitoring
infrastructure to check whether
your infrastructure works, and
whether your data integration
servers are able to access the
data.

But data should be available

on time as well. So, if you have
access to data from technical
point of view, it doesn’t mean you
have access to current data. Apply
test cases that check your data
for timeliness.

Accessibility of Source
Data
Enterprise data is usually secured
by a strong data security concept.
To access data, a security context
with adequate permissions is
needed by the data integration
process. Usually these are
user credentials stored in the
data management system or
in directory services like Active
Directory.

Accidentally it may happen,
that permissions get lost,
user accounts get disabled or
passwords expire. A test case that
runs in the same security context
as the data integration process
does, is able to check whether
access to data is allowed at any
time it is needed.

https://bigeval.com/

bigeval.com 9

The staging area is the first point where your data collection starts. There are various concepts for building
a staging area. The easiest kind of staging area is just a central place where your source data gets stored
during the first step of the data integration process (ETL process). This step is also called “extraction” and
represents the “E” within ETL. When the whole data integration process finishes, the staging area may be
emptied completely. There is usually no special functionality, why testing is quite simple.
But when there are special requirements like querying older versions of data records from the source
systems to rebuild history, or when there is no possibility to get delta-datasets from the source systems that
only contain the records that were changed since the last data load, a persistent staging area can be a viable
solution. This kind of staging area architecture needs some more testing to ensure it is working correctly
whenever it is needed.

STAGING AREA

https://bigeval.com/

bigeval.com10

Availability of Source Data
Ensure that all source data is
available in the staging area when
the extraction step finished. This
test is about validating that on
a high level. At this point, it is
enough to check whether data
could be fetched from all the
source systems.

Records count
The next test should be about
checking whether there is the right
amount of records for every entity
that was extracted. Is the amount
of records plausible? Does it meet
the expectations? Does it exactly
meet the amount of records in the
source system. The latter can be
done by comparing the records
count in the source system with
the one in the staging area.

Business key
completeness
Counting the amount of records is
not always enough. When some
records are missing and some
were duplicated anyhow, you
get a false-positive test result.
So checking whether each and
every business key or record ID
is present in the staging area, is
much more safe. But it takes more
time and may harm the systems
performance.

Format checks
There are many reasons, why
extracted data could be falsified
during extraction. The main
reason is, that the goal of a

staging area is to collect data
form many different technologies
with different configurations.

First at all, there could be a loss
of special characters because
of different character sets or
collations used in your source
systems and your staging area.

Date and Time values are hot
subjects for errors as well. There
are many different ways to store
date and time information. Also
timezone-awareness is important
and may need complex handling.

One more thing is to check,
whether data gets truncated. A
feasible test could be to compare
meta-data (data type and length)
between source system and
staging area.
Another good indicator for such
errors is to check whether strings
fill the columns in the staging
area completely. If there are
many strings that fill the columns
completely, there is a high risk that
data was truncated.

Test all these things by one
of the following ways or by a
combination:

 » Compare data between source
systems and your staging area to
find differences.

 » Compare staged data against a
reference data set.

 » Test extreme values during
the system development. Check
whether your system behaves
correctly.

Historization complete
The complexity of a staging area
rises when you decide to build a
history for your data records. A
persistent staging area is needed
that tracks the state of records
from your source systems.
One of the most common
problems with persistent staging
areas is, to keep the history
complete. There shouldn’t be
any gaps or overlaps between
versions. And the most current
records should be available.

Performance Checks
Staging data can be time
consuming depending on
the volume of data and the
communication technology
between the source system and
the staging area. Staging can
be a bottleneck in the whole
data integration process. That’s
why it is wisely to check the
performance regularly. Not only
during development, but much
more when the system is in
productive use.

https://bigeval.com/

bigeval.com 11

This is where all data comes together and where the most complex development work has to be done.
The data integration process usually consists of multiple steps that cleanse data, make data from different
sources comparable, combines it and finally loads it into the data warehouse model - usually in a historized
form.
Depending on the data and the complexity of the data, there could be many things that could go wrong.
Therefore, a good testing strategy is needed for this part of the data warehouse.
There are also different data loading scenarios that maybe all or at least some of them need to be realized.
There’s the initial load that get run one time only to load all available data from the past until now into the
data warehouse. The regular data load runs continuously on a daily basis or whatever loading interval you
use. Then there may be loading scenarios for fixing errors that could arise also in a very well tested data
warehouse. After rolling back a data load, a robust process should be able to rerun it again to incorporate
data corrections made in the source systems or anywhere between.

DATA INTEGRATION

https://bigeval.com/

bigeval.com12

Initial Load
An initial load scenarios gets
implemented to run only once.
Because of that, it happens
quite often that implementation
quality lacks. Make sure that the
initial load runs smooth, correct
and within the time available to
prevent fire drills at the time when
your data warehouse release
should go live.

Regular Load
In contrast to the initial load, the
continuous load will run regularly
and is the main pillar of the data
warehouse system. Take care that
this process is tested very well.
These tests need to be repeatable
by the push of a button to reuse
them every time you intend to
build a new release or a hot fix.
This is the most effective way
to keep a high quality during
the whole life cycle of the data
warehouse system.

Rollback
Every good data management
technology is transaction aware to
give you the possibility to roll back
changes easily. But these features
are usually made for short and
atomic transactions. Whereas in a
data warehouse load, we usually
perform a huge amount of data
operations that take much more
time to run.
Depending on whether you can
rely on the transaction features of
your underlying data management
technology or not, the rollback
mechanism can get very simple

or very complex. Depending
on the complexity, you should
take attention within the testing
strategy.

Reload
Running a data load again usually
means, that the last data load
gets rolled back and rerun. But
there may be much more complex
scenarios, where a specific range
of dates should be reloaded or
similar. This is quite difficult to
do, because history may be lost
and should be rebuilt in a similar
way, the initial load does it. This
could be a huge effort and must
be tested very well. Otherwise you
could loose a part of your data
history.

Rerunning data loads
without rollback
Are you aware about what
happens, when the same data
load gets run multiple times
without rolling it back in between?
This is a scenario that gets
overlooked many times. Take care
of that.

Business Logic
When talking about business
logic in the context of a data
warehouse system, we like the
naming of hard and soft rules as
Dan Linsted used to do it in his
Data Vault concepts. Hard rules
do not change the meaning of
information and are usually more
technical (e.g. concatenation,
splitting, trimming, changing data
types etc.). Whereas soft rules are

the respective business rules, that
change and interpret data.

The implementation of hard rules
can be tested quite easy, because
they are usually not very complex,
and the behavior and output is
well defined.

Soft rules can vary from a simple
one to very hard understandable
rules. Try to break down the rules
into atomic tasks that are easier
to understand and also easier to
test.

Often I get asked whether
there is a testing software, that
automatically understands
business rules implementation
based on the code. Sadly, theres
no such thing on the market.
Furthermore, such a software
wouldn’t make sense. It would
test the artifact wrong if there
were errors in the code because it
would assume that the error is the
correct implementation.

So there’s no better way as
building tests manually. In fact,
it makes sense to build tests by
another person than the developer
itself. Because the other person
will build the tests based on the
requirements definition instead of
using the implementation know
how that may be wrong.

There are the following options for
building business logic test cases:

 » Black box testing. Run the
smallest possible task of your
business logic by using reference

https://bigeval.com/

bigeval.com 13

data as the input. Then check
the result whether it meets the
expected result. Depending on
the data load technology you may
run a stored procedure or check
the output of a view against the
expected outcome.

 » White box testing can be used
to check specific things that were
implemented in the business
logic. It needs the implementation
knowhow of developers. But it
works quite similar like black box
testing. Input some reference data
and check the outcome. See what
happens when you use extreme
values. Does the task behaves as
intended? Does it succeed? Does
it fail? Does it write error logs?

Historization
Most data warehouse systems
build up a kind of data history.
The store different versions of
data records to allow end users to
analyze development of values or
data changes over time.

Every data modeling concept uses
architectural patterns for data
history. Therefore you can use a
defined set of test cases for every
historized entity.

An automation solution like BiG
EVAL makes you capable of
building these test cases only
once and automatically applying
them onto all historized entities in
your data warehouse system.

These are the most important

things your test cases should
consider:

 » Is the history complete from
start to end?

 » Are there any gaps between
versions of data records?

 » Are there any overlaps of
versions? E.g. V1 ends in March,
but V2 starts in February.

 » Get older records correctly
terminated when adding new
versions? E.g. Setting end-date or
current-flags etc.

Data Cleansing
We do not like data cleansing
mechanisms in data integration
processes because we
recommend to correct data in the
source systems. But we are aware
about the difficulties of doing that.

Data cleansing is a wide spread
term from an architectural point
of view. It could be anything
regarding mangling data to bring it
into the needed form. Sometimes
there is complex business logic
and complex data mappings
or similar that gets applied to
correct errors made in the source
systems.

Ensure that there are automatable
test cases for all cleansing fixes.
Especially when these cleansing
fixes rely on manually maintained
mapping tables or similar, you
should implement test cases for
runtime. The reason is simple:
Where manual work is needed,
there could be human input errors.

Performance
Usually there is only a short time
window within data loads should
be completed. The loading time
evolves over time. In the first
iterations, the data loads need a
lot of time because they are not
completely optimized. After a
refactoring iteration, the loading
time drops and is acceptable.
But when data volumes rise -
and that usually the case when
building history - the loading
time rises as well. Sometimes
exponentially. That’s why you
should build performance tests
for the productive runtime of the
system. These performance tests
can be based on loggings. They
can check whether the loading
time exceeds a specified amount
of time.

https://bigeval.com/

bigeval.com14

Data Model fully
implemented
Check whether the actual data
model is fully implemented
compared to the one defined in
the systems specifications.

Correctly sized data types
An architectural rule says, that
one should choose the data types
with the smallest need of storage
space. That’s true regarding
system performance. But there
could be situations, where you are
better to choose larger data types.
There are the following reasons
for that:

 » Information stored could grow
over time.

 » The aggregate of a huge
amount of small numbers could
be really big and may not fit into
the same data type.

 » Vendors of source systems
may change data types. Therefore,
you need enough flexibility in the
data warehouse.

 » Source systems could be
replaced (migrated).

We recommend to validate
data types during development.
This could be a manual task or
even an automated test. Using
an automated test, you may
aggregate data and check whether
it fits into the data types used. Or
you may compare data types of
the source systems with the data
types of the target columns in
your data warehouse.

Check for data truncation
When data truncation occurs, you
are going to loose information. So
there is a need to check for data
truncation on a regular basis.
The logic behind this kind of
test is easy. Check for every
character- or string-field in the
data warehouse, whether there
is a huge amount of records that
fill the field completely. E.g. you
have a Status-Field with a width of
10 characters. If there are many
records that use all these 10
characters, there is a high risk that
data was truncated.

Referential integrity
checks
There are forms of data
warehouse architectures, where
the referential integrity checks
of the data base management
system (DBMS) are disabled. Data
Vault 2.0 for example requires
to disable referential integrity
checks when you want to load
data in parallel or in other words -
asynchronously.

Do not run a critical data
warehouse system without any
referential integrity checks. When
the DBMS’s functionality must
be disabled for any reason, you
should check referential integrity
by an automated test case that
runs continuously.
We described such an
implementation using BiG EVAL in
the following blog post:
https://bigeval.com/dta/data-
vault-consistency-without-
referential-integrity/

DATA MODEL AND META DATA

https://bigeval.com/
https://bigeval.com/dta/data-vault-consistency-without-referential-integrity/
https://bigeval.com/dta/data-vault-consistency-without-referential-integrity/
https://bigeval.com/dta/data-vault-consistency-without-referential-integrity/

